Partiality, Revisited - The Partiality Monad as a Quotient Inductive-Inductive Type

نویسندگان

  • Thorsten Altenkirch
  • Nils Anders Danielsson
  • Nicolai Kraus
چکیده

Capretta’s delay monad can be used to model partial computations, but it has the “wrong” notion of built-in equality, strong bisimilarity. An alternative is to quotient the delay monad by the “right” notion of equality, weak bisimilarity. However, recent work by Chapman et al. suggests that it is impossible to define a monad structure on the resulting construction in common forms of type theory without assuming (instances of) the axiom of countable choice. Using an idea from homotopy type theory—a higher inductive-inductive type—we construct a partiality monad without relying on countable choice. We prove that, in the presence of countable choice, our partiality monad is equivalent to the delay monad quotiented by weak bisimilarity. Furthermore we outline several applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quotient inductive-inductive types

Higher inductive types (HITs) in Homotopy Type Theory (HoTT) allow the definition of datatypes which have constructors for equalities over the defined type. HITs generalise quotient types, and allow to define types which are not sets in the sense of HoTT (i.e. do not satisfy uniqueness of equality proofs) such as spheres, suspensions and the torus. However, there are also interesting uses of HI...

متن کامل

Partiality and Container Monads

We investigate monads of partiality in Martin-Löf type theory, following Moggi’s general monad-based method for modelling effectful computations. These monads are often called lifting monads and appear in category theory with different but related definitions. In this paper, we unveil the relationship between containers and lifting monads. We show that the lifting monads usually employed in typ...

متن کامل

Nested General Recursion and Partiality in Type Theory

We extend Bove’s technique for formalising simple general recursive algorithms in constructive type theory to nested recursive algorithms. The method consists in defining an inductive special-purpose accessibility predicate, that characterizes the inputs on which the algorithm terminates. As a result, the type-theoretic version of the algorithm can be defined by structural recursion on the proo...

متن کامل

Monad Translating Inductive and Coinductive Types

We show that the call-by-name monad translation of simply typed lambda calculus extended with sum and product types extends to special and general inductive and coinductive types so that its crucial property of preserving typings and βand commuting reductions is maintained. Specific similar-purpose translations such as CPS translations follow from the general monad translations by specializatio...

متن کامل

The Delay Monad and Restriction Categories

We continue the study of Capretta’s delay monad as a means of introducing non-termination from iteration into Martin-Löf type theory. In particular, we explain in what sense this monad provides a canonical solution. We discuss a class of monads that we call ω-complete pointed classifying monads. These are monads whose Kleisli category is an ωcomplete pointed restriction category where pure maps...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017